# University of Southern California Viterbi School of Engineering Ming Hsieh Department of Electrical Engineering



# EE504L Spring 2019

# Solid State Processing and Integrated Circuit Laboratory

# **Electrical Characterizatoin of IC Devices**

## **Final Report**

Student Name: Hongxiang Gao

USC ID: 8095639536

Instructor: Prof. Kian Kaviani

TA: Jihan Chen

July 14, 2019

# Contents

| 1        | Abs            | stract  |                                                                                                                                                                     | 1        |
|----------|----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>2</b> | Intr           | oductio | on                                                                                                                                                                  | <b>2</b> |
| 3        | The            | eory    |                                                                                                                                                                     | 3        |
|          | 3.1            | Resisto | or Measurements                                                                                                                                                     | 3        |
|          |                | 3.1.1   | Sheet Resistor Measurement                                                                                                                                          | 3        |
|          |                | 3.1.2   | Transmission Line Measurement                                                                                                                                       | 3        |
|          |                | 3.1.3   | Transfer Line Method                                                                                                                                                | 5        |
|          |                | 3.1.4   | IC Resistors                                                                                                                                                        | 6        |
|          | 3.2            | PN Die  | ode Measurements                                                                                                                                                    | 7        |
|          |                | 3.2.1   | Fundamental Structure Concepts                                                                                                                                      | 7        |
|          |                | 3.2.2   | $I - V$ Characteristic Curve $\ldots \ldots \ldots$ | 8        |
|          | 3.3            | MOS (   | Capacitor Measurements                                                                                                                                              | 9        |
|          |                | 3.3.1   | Fundamental Structure Concepts                                                                                                                                      | 9        |
|          |                | 3.3.2   | Extraction of Oxide Thickness from the $C - V$ Data                                                                                                                 | 10       |
|          |                | 3.3.3   | Extraction of $N_{sub}$                                                                                                                                             | 11       |
|          |                | 3.3.4   | Extraction of Oxide Charges                                                                                                                                         | 12       |
|          | 3.4            | MOSE    | ET Measurements                                                                                                                                                     | 13       |
|          |                | 3.4.1   | Fundamental Structure Concepts                                                                                                                                      | 13       |
|          |                | 3.4.2   | Linear Regime                                                                                                                                                       | 14       |
|          |                | 3.4.3   | Linear-Saturation Transition                                                                                                                                        | 14       |
|          |                | 3.4.4   | Saturation Regime                                                                                                                                                   | 14       |
|          |                | 3.4.5   | Extraction of Threshold Voltage & Average Channel Mobility in Satu-                                                                                                 |          |
|          |                |         | ration Regime                                                                                                                                                       | 15       |
|          |                | 3.4.6   | Extraction of Saturation Velocity                                                                                                                                   | 15       |
|          |                | 3.4.7   | Extraction of Transconductance                                                                                                                                      | 15       |
|          |                | 3.4.8   | Extraction of Output Conductance                                                                                                                                    | 16       |
|          |                | 3.4.9   | Voltage Swing                                                                                                                                                       | 17       |
|          |                | 3.4.10  | Channel Conductance and Extraction of Mobility in Linear Regime .                                                                                                   | 17       |
| <b>4</b> | $\mathbf{Res}$ | ult     |                                                                                                                                                                     | 19       |
|          | 4.1            | Resisto | or Measurements                                                                                                                                                     | 19       |
|          |                | 4.1.1   | Sheet Resistor Measurement                                                                                                                                          | 19       |
|          |                | 4.1.2   | Transfer Line Method                                                                                                                                                | 19       |
|          | 4.2            | PN Die  | ode Measurements                                                                                                                                                    | 21       |



|          |       | 4.2.1   | Built-in Voltage Measurement                                             | 21 |
|----------|-------|---------|--------------------------------------------------------------------------|----|
|          |       | 4.2.2   | Ideality Factor Measurement                                              | 22 |
|          | 4.3   | MOS (   | Capacitor Measurements                                                   | 24 |
|          |       | 4.3.1   | MOS Capacitor C-V Characteristics Measurement                            | 24 |
|          |       | 4.3.2   | Extraction of Oxide Thickness from C-V Data                              | 25 |
|          |       | 4.3.3   | Extraction of $N_{sub}$                                                  | 25 |
|          |       | 4.3.4   | Extraction of Oxide Charge                                               | 26 |
|          | 4.4   | MOSF    | ET Measurements                                                          | 28 |
|          |       | 4.4.1   | I-V Characteristic Curve                                                 | 28 |
|          |       | 4.4.2   | Extraction of Threshold Voltage and Average Channel Mobility             | 30 |
|          |       | 4.4.3   | Saturation Velocity $(V_S)$                                              | 31 |
|          |       | 4.4.4   | Transconductance $(g_m)$ of MOSFET                                       | 32 |
|          |       | 4.4.5   | Output Conductance $(g_d)$                                               | 33 |
|          |       | 4.4.6   | $\frac{g_m}{a_d}$ and Voltage Swing                                      | 34 |
|          |       | 4.4.7   | Čhannel Conductance( $g_c$ ) and Extraction of Mobility in Linear Regime | 35 |
| <b>5</b> | Disc  | cussion | L                                                                        | 36 |
|          | 5.1   | Resiste | or                                                                       | 36 |
|          | 5.2   | PN Di   | ode                                                                      | 36 |
|          | 5.3   | MOS (   | Capacitor                                                                | 36 |
|          | 5.4   | MOSF    | $\dot{ET}$                                                               | 36 |
| 6        | Con   | clusio  | n                                                                        | 37 |
| Re       | efere | nces    |                                                                          | 38 |

٢

# List of Figures

| 3.1  | View of IC Resistor[1] $\ldots$                                                                                       | 3  |
|------|-----------------------------------------------------------------------------------------------------------------------|----|
| 3.2  | Resistor Circuit                                                                                                      | 4  |
| 3.3  | Transfer line method test structure                                                                                   | 5  |
| 3.4  | Data Plot of TLM $(R_T \text{ vs. } d)$                                                                               | 5  |
| 3.5  | IC resistor L=10, 400, $5400\mu m$                                                                                    | 6  |
| 3.6  | Cross Section of PN Diode                                                                                             | 7  |
| 3.7  | $I$ vs. $V_r$ in PN Diode $\ldots$                                                                                    | 8  |
| 3.8  | Theoretical and Experimental Graph of $ln(I)$ vs $V_r$                                                                | 8  |
| 3.9  | Cross Section of MOS Capacitor                                                                                        | 9  |
| 3.10 | Band structure of MOS capacitor                                                                                       | 9  |
| 3.11 | Band structure at different conditions                                                                                | 10 |
| 3.12 | MOS Capacitors $C - V$ Characteristics $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 11 |
| 3.13 | C-V Shift Due to Oxide Charges and Metal-Semiconductor Work Function                                                  |    |
|      | Differences                                                                                                           | 11 |
| 3.14 | Cross Section of MOSFET                                                                                               | 13 |
| 3.15 | I - V Characteristics of MOSFET[2]                                                                                    | 13 |
| 3.16 | Graph of $\sqrt{I_{ds,sat}}$ vs $V_{gs}$ of MOSFET                                                                    | 15 |
| 3.17 | Graph of $I_{ds,sat}$ vs $V_{gs}$ of MOSFET                                                                           | 16 |
| 3.18 | Graph of $g_m$ vs $V_{gs}$ of MOSFET in Saturation Regime                                                             | 16 |
| 3.19 | Graph of $g_m$ vs $V_{gs}$ & Extraction of $g_{m,max}$ & the Corresponding $V_{gs}$                                   | 17 |
| 3.20 | Graph of $g_d$ vs $V_{ds}$ in Saturation Regime                                                                       | 17 |
| 3.21 | Graph of $g_d$ vs $V_{gs}$ in Saturation Regime                                                                       | 18 |
| 3.22 | Graph of Voltage Swing                                                                                                | 18 |
| 3.23 | Graph of $g_c$ vs $V_{gs}$ in Linear Regime                                                                           | 18 |
|      |                                                                                                                       |    |
| 4.1  | R $(\Omega)$ vs d $(\mu m)$ Relationship for TLM20                                                                    | 20 |
| 4.2  | Measured Current I (A) vs Applied Voltage V (V) for Diode $\#1$                                                       | 21 |
| 4.3  | Measured Current I (A) vs Applied Voltage V (V) for Diode $#2$                                                        | 21 |
| 4.4  | Measured Current $\ln(I)$ (A) vs Applied Voltage V (V) for Diode #1                                                   | 22 |
| 4.5  | Measured Current $\ln(1)$ (A) vs Applied Voltage V (V) for Diode #2                                                   | 23 |
| 4.6  | Capacitance C (F) vs Bias Voltage V (V) for MOS Capacitor $\#1$                                                       | 24 |
| 4.7  | Capacitance C (F) vs Bias Voltage V (V) for MOS Capacitor $#2 \dots \dots$                                            | 25 |
| 4.8  | I-V Curve of MOSFET with L=16 $\mu m$ , W=40 $\mu m$ in Linear Regime                                                 | 28 |
| 4.9  | I-V Curve of MOSFET with L=16 $\mu m$ , W=40 $\mu m$ in Saturation Regime                                             | 28 |
| 4.10 | I-V Curve of MOSFET with L=16 $\mu m$ , W=80 $\mu m$ in Linear Regime                                                 | 29 |



| 4.11 | I-V Curve of MOSFET with L=16 $\mu m$ , W=80 $\mu m$ in Saturation Regime                                                                                                               | 29 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.12 | $\sqrt{I_{ds,sat}}$ and $V_{gs}$ Relationship                                                                                                                                           | 30 |
| 4.13 | $I_{ds,sat}$ and $V_{gs}$ Relationship                                                                                                                                                  | 31 |
| 4.14 | Transconductance $g_m$ and $V_{gs}$ Relationship $\ldots \ldots \ldots$ | 32 |
| 4.15 | Output Conductance $g_d$ and $V_{gs}$ Relationship $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$                                                                            | 34 |
| 4.16 | $\frac{g_m}{a_s}$ and $V_{gs}$ Relationship                                                                                                                                             | 34 |
| 4.17 | $g_c^{J_a}$ and $V_{gs}$ Relationship $\ldots \ldots \ldots$            | 35 |

٢

# List of Tables

| 4.1  | Sheet Resistance Measurements                                                                                                                                                                    | 19 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.2  | Transfer Line Resistance Measurements                                                                                                                                                            | 20 |
| 4.3  | Built-in Potential $V_{bi}$ Calculation                                                                                                                                                          | 22 |
| 4.4  | Ideality Factor $n$ & Reverse Saturation Current $I_0$ Calculation $\ldots \ldots \ldots$                                                                                                        | 23 |
| 4.5  | Oxide Capacitance $C_{SiO_2}$ & Silicon Capacitance $C_{Si}$ Calculation                                                                                                                         | 24 |
| 4.6  | Iteration for MOS Capacitor $\#1$                                                                                                                                                                | 26 |
| 4.7  | Iteration for MOS Capacitor $#2$                                                                                                                                                                 | 26 |
| 4.8  | $I_{ds,sat}, \sqrt{I_{ds,sat}}$ and $V_{gs}$ Relationship $\ldots \ldots \ldots$ | 30 |
| 4.9  | Transconductance $g_m \& V_{gs} \ldots \ldots$                                                                             | 33 |
| 4.10 | Output Conductance $g_d \& V_{gs} \ldots \ldots$                                                                           | 33 |
|      |                                                                                                                                                                                                  |    |

## List of Nomenclatures

## Resistor

 $\begin{array}{l} \rho: \mbox{ Resistivity of the material } (\Omega \cdot m) \\ L: \mbox{ Length of the block } (cm) \\ W: \mbox{ Width of the block } (cm) \\ A: \mbox{ Area of cross section of the block } (cm^2) \\ t: \mbox{ Thickness of the block } (cm) \\ R_{sh}: \mbox{ Sheet Resistance of the block } (\Omega/\Box) \\ (\frac{L}{W})_{eff}: \mbox{ Effective number of squares} \\ d_i: \mbox{ Distance between } i \ th \ contact \ and \ i+1 \ th \ contact \ (cm) \\ R_T: \ Total \ resistance \ (\Omega) \\ R_m: \ Resistance \ due \ to \ the \ contact \ metal \ (\Omega) \\ R_C: \ Resistance \ of \ the \ doped \ layer \ (\Omega) \end{array}$ 

## **PN** Diode

W: Width of depletion region (cm)

 $x_n$ : Width of depletion region in n-type part (cm)

 $x_p$ : Width of depletion region in p-type part (cm)

 $N_A$ : Doping concentration of acceptor  $(cm^{-3})$ 

 $N_D$ : Doping concentration of donor  $(cm^{-3})$ 

 $V_a$ : Externally applied voltage source (V)

 $V_{bi}$ : Built-in potential (V)

k: Boltzmann constant (eV/K)

T: Room temperature (K)

q: Elementary charge (C)

 $n_i$ : Intrinsic carrier concentration of Si at 300K ( $cm^{-3}$ )

I: Measured current (A)

 $I_0$ : Reverse saturation current (A)

n: Ideality factor



 $\Phi_m$ : Metal work function (eV)  $\Phi_s$ : Semiconductor work function (eV)  $\chi$ : Electron affinity (V)  $C_{SiO_2}$ : Capacitance of SiO<sub>2</sub> (F)  $\epsilon_{ox}$ : Oxide (SiO<sub>2</sub>) relative permittivity  $\epsilon_0$ : Permittivity of the free space (F/cm)A: Area of the capacitor  $(cm^2)$  $t_{ox}$ : Oxide thickness (cm)  $C_{Si}$ : Capacitance of Si (F)  $C_{sf}$ : Capacitance of series  $C_{Si}$  and  $C_{SiO_2}$  (F)  $\phi_f$ : Fermi function (V)  $N_{sub}$ : Number of electrons in substrate  $V_{FB}$ : Flat-band voltage (V)  $C_{FB}$ : Flat-band capacitance (F)  $L_d$ : Deby length (*cm*)  $N_f$ : Number of charges per unit area of the capacitor  $(C/cm^2)$ 

 $Q_{ss}$ : Number of charges per unit area of the capacitor  $(C/cm^2)$ 

### MOSFET

 $I_{ds}$ : Drain-to-source current (A)

 $\bar{\mu}$ : Average mobility of carriers in the channel  $(cm^2/(V \cdot s))$ 

 $C_0$ : Capacitance per area of the MOS structure  $(F/cm^2)$ 

W: MOSFET width  $(\mu m)$ 

L: MOSFET gate length  $(\mu m)$ 

 $V_{gs}$ : Gate-to=source voltage (V)

 $V_{th}$ : Threshold voltage (V)

 $V_{ds}$ : Drain-to-source voltage (V)

 $V_{ds,sat}$ : Saturation drain-to-source voltage (V)

 $I_{ds,sat}$ : Saturation drain-to source current (A)

 $v_S$ : Saturation velocity (cm/s)

 $g_m$ : Transconductance (A/V)

 $g_d$ : Output conductance: (A/V)

 $V_{SW}$ : Voltage swing (V)

 $g_c$ : Channel conductance (A/V)

 $\mu_{lin}$ : Carrier mobility in linear regime  $(cm^2/(V \cdot s))$ 

## 1. Abstract

This report firstly gives the theoretical details of how to calculate physical parameters of resistors, PN diode, capacitors and MOSFETs. The calculation result of each type of device of wafer is given. The wafer is fabricated in EE504 Lab session. In next part, the reasons of unexpected data and phenomenon are discussed. In the last part, the conclusion about EE504L class and lab experience is given.

## 2. Introduction

When talking about the trend in the development of electronic products in recent decades, Moore's law would be the first thing that people would think of. Its core content is the complexity of integrated circuits, with respect to minimum component cost, doubles every 18 to 24 months. For example, in 1987 the revenue of semiconductor industry is 33 billion dollars, however, in 2017 it has been already 408 billion dollars which is more than 10 times bigger than 1987.

However, during the development of electronic industry, bottlenecks appeared in fabrication process, Moore's law was challenged. To overcome these obstacles, some advanced fabrication process were developed, for instance, thermal oxidation, ion implantation, photolithography and so on. All these techniques are applied in this 504L lab session[3].

This report will give the theoretical method to measure some parameters of resistors, PN diodes, MOS capacitors and MOSFETs in Section 3. In Section 4, experimental results and calculations based on theorems are given. In Section 5, the reasons of unexpected data and phenomenon are discussed. And in last section, the conclusion about EE504L class and lab experience is given.

## 3. Theory

## 3.1 Resistor Measurements

#### 3.1.1 Sheet Resistor Measurement

The resistance R of a rectangular block of uniformly doped material is given by:

$$R = \rho \cdot \frac{L}{A} = \rho \cdot \frac{L}{W \cdot t} = R_{sh} \cdot (\frac{L}{W})_{eff}$$
(3.1)

where

 $\rho$  is the resistivity of the material  $(\Omega \cdot m)$ .

L is the length of the block (cm).

W is the width of the block (cm).

A is the area of cross section of the block  $(cm^2)$ .

t is the thickness of the block (cm).

 $R_{sh}$  is the sheet Resistance of the block  $(\Omega/\Box)$ .

 $(\frac{L}{W})_{eff}$  is the effective number of squares.

The most commonly used techniques in industrial environment are the Transmission Line Measurement (TLM) and Transfer Line Method (also TLM).

#### 3.1.2 Transmission Line Measurement



Cross Sectional View of an IC Resistor

Figure 3.1: View of IC Resistor[1]

Figure 3.1, 3.2 show that the total resistance  $(R_T)$  measured on the scope is sum of the resistance due to the wire&probe tips (usually small and neglected), resistance due to



Figure 3.2: Resistor Circuit

the contact metal  $(R_m)$ , resistance due to the metal-semiconductor contact  $(R_C)$  and the resistance of the doped layer  $(R_S)$ :

$$R_T = 2R_m + 2R_C + R_S (3.2)$$

Since  $R_m$  value compared  $R_C$  and  $R_S$  is small and we usually neglect that, which results in:

$$R_T = 2R_C + R_S$$
where
$$R_S = R_{sh} \cdot \frac{d}{A}$$
(3.3)

Using  $d_1$  and  $d_2$  and their corresponding measured total resistance of  $R_{T1}$  and  $R_{T2}$  we obtain:

$$R_{T1} = 2R_C + R_{sh} \cdot \frac{d_1}{A}$$

$$R_{T2} = 2R_C + R_{sh} \cdot \frac{d_2}{A}$$
(3.4)

If we solve the above system for  $R_C$ , we obtain:

$$R_{C} = (R_{T1} \cdot d_{2} - R_{T2} \cdot d_{1})/2(d_{1} - d_{2})$$

$$R_{sh} = A(R_{T1} - R_{T2})/(d_{1} - d_{2})$$
(3.5)

The disadvantage of this method for finding  $R_{sh}$  is that the A or the cross sectional area of the carrier flow in the IC resistor is needed and that depends on the junction depth (t) of the diffused layer at the end of the process, and we usually do not have this number available. That is why the Transmission Line Measurement (TLM) is used more commonly in which we can extract both  $R_C$  and  $R_m$  simultaneously without much trouble.

## 3.1.3 Transfer Line Method



Figure 3.3: Transfer line method test structure



Figure 3.4: Data Plot of TLM  $(R_T vs. d)$ 

In Figure 3.3 and 3.4, the slope is:

$$Slope = R_{sh}/Z \tag{3.6}$$

We can get  $R_{sh}$  by dividing the slope by Z (width).

### 3.1.4 IC Resistors



**Figure 3.5:** *IC resistor L*=10, 400, 5400µm

Three types of Resistors, which are shown in Figure 3.5, represented as R400, R800 and R5400.

$$R = R_{sh} \cdot (\frac{L}{W})_{eff} \tag{3.7}$$

Here for making the pad corrections in R400, R800 and R5400, we just add 40 micrometers to the nominal lengths to have 440, 840, and 5440 micrometers accordingly. In the R5400 we need to make the correction for bends.

## 3.2 PN Diode Measurements

#### 3.2.1 Fundamental Structure Concepts



Figure 3.6: Cross Section of PN Diode

Figure 3.6 shows the cross section of a PN diode. where

W is the width of depletion region (cm).

 $x_n$  is the width of depletion region in n-type part (*cm*).

 $x_p$  is the width of depletion region in p-type part (*cm*).

 $N_A$  is the doping concentration of acceptor  $(cm^{-3})$ .

 $N_D$  is the doping concentration of donor  $(cm^{-3})$ .

 $V_a$  is the externally applied voltage source (V).

The built potential is given as:

$$V_{bi} = \frac{kT}{q} \cdot \ln(\frac{N_n \cdot P_p}{n_i^2}) \tag{3.8}$$

where

 $V_{bi}$  is the built-in potential (V).

k is the Boltzmann constant, which is about  $8.617 \times 10^{-5} (eV/K)$ .

T is the room temperature, which is about 300 (K).

q is the elementary charge, which is about  $1.6 \mathrm{x} 10^{-19}~(C)$ 

 $n_i$  is the intrinsic carrier concentration of Si at 300K, which is about  $1.5 \times 10^{10} (cm^{-3})$ 

Using the above assumptions, following a lengthy derivation we can derive the following equation which describes the current-voltage (I - V) characteristics of a PN diode:

$$I = I_0 \cdot (e^{\frac{q_V}{nkT}} - 1) \tag{3.9}$$

where

I is the measured current (A)

 $I_0$  is the reverse saturation current, which is usually in (pA) level.

n is a correction factor which takes into account all non-ideal effects and is called ideality factor and in most cases it is usually between 1 and 2.



Figure 3.7: I vs.  $V_r$  in PN Diode

Values of n,  $I_0$  and  $V_{bi}$  are experimentally extracted from the DC data.

#### **3.2.2** I - V Characteristic Curve

In the diode I - V formula, for all practical purposes in the forward bias regime, we can rewrite the equation as:

$$I = I_0 \cdot \left(e^{\frac{q_V}{nkT}}\right) \tag{3.10}$$

Taking the natural logarithm of the above relation results in a linear relation for ln(I) vs. V:

$$ln(I) = ln(I_0) + \frac{qV}{nkT}$$
(3.11)

Figure 3.8 shows the theoretical and experimental Graph of ln(I) vs  $V_r$ .



Figure 3.8: Theoretical and Experimental Graph of ln(I) vs  $V_r$ 

## 3.3 MOS Capacitor Measurements

#### 3.3.1 Fundamental Structure Concepts



Figure 3.9: Cross Section of MOS Capacitor

Figure 3.9 shows the cross section of a MOS capacitor.



Figure 3.10: Band structure of MOS capacitor

Figure 3.10 shows the band structures. Figure 3.11 shows four cases when different external voltage is applied. For (a), it is the flat band situation, for (b), it's in accumulation regime, for (c), it's in depletion regime and for (d), it's in inversion regime.

Figure 3.12 shows the C - V relationship.



Figure 3.11: Band structure at different conditions

#### **3.3.2** Extraction of Oxide Thickness from the C - V Data

The extraction of oxide thickness from the C - V data is:

$$C_{SiO_2} = \frac{\epsilon_{ox}\epsilon_0 A}{t_{ox}} \tag{3.12}$$

where

 $C_{SiO_2}$  is the capacitance of SiO<sub>2</sub> (F).

 $\epsilon_{ox}$  is the oxide (SiO<sub>2</sub>) relative permittivity, which is about 3.9.

 $\epsilon_0$  is the permittivity of the free space, which is about  $8.85 \times 10^{-14}$  (F/cm).

A is the area of the capacitor.  $(cm^2)$ .

 $t_{ox}$  is the oxide thickness (*cm*).

And also

$$C_{Si} = \frac{\epsilon_{Si}\epsilon_0 A}{W}$$

$$C_{sf} = \frac{C_{Si} \cdot C_{SiO_2}}{C_{Si} + C_{SiO_2}}$$
(3.13)



Figure 3.12: MOS Capacitors C - V Characteristics

## **3.3.3** Extraction of $N_{sub}$

After extraction of  $N_{sub}$ :

$$\phi_{f} = \frac{kT}{q} \cdot \ln(\frac{N_{A}}{n_{i}}) > 0 \qquad p - typesemiconductor(V)$$
  

$$\phi_{f} = \frac{kT}{q} \cdot \ln(\frac{n_{i}}{N_{D}}) < 0 \qquad n - typesemiconductor(V) \qquad (3.14)$$
  

$$N_{sub} = \frac{4\phi_{f}C_{sf}^{2}}{q\epsilon_{Si}\epsilon 0A^{2}}$$



**Figure 3.13:** C - V Shift Due to Oxide Charges and Metal-Semiconductor Work Function Differences

### 3.3.4 Extraction of Oxide Charges

The extraction of oxide charges:

$$C_{FB} = \phi_{MS} + \frac{Q_{ss}}{C_{SiO_2}} \tag{3.15}$$

where

 $\Phi_{MS} = \Phi_M - \Phi_S$ 

 $\Phi_m$  is the metal work function, which is about 4.10 (eV) for Aluminum.

 $\Phi_s$  is the semiconductor work function in (eV), which is equal to  $\chi_{Si} + \frac{E_g}{2} + \phi_f$ . where

 $\chi$  is the electron affinity (V).

 $E_g$  is the band gap of silicon at 300 (K), which is about 1.12 (eV).

The flat band capacitance is:

$$C_{FB} = \frac{1}{\frac{1}{C_{OX}} + \frac{L_d}{\epsilon_{Si}\epsilon_0 A}}$$
(3.16)

where

 $L_d$  is the Deby length, which is equal to  $L_d = \sqrt{\frac{\epsilon_{Si}\epsilon_0 kT}{q^2 N_A}}$ .

The number of charges per unit area of the capacitor  $(N_f)$  can be found by:

$$N_f = Q_{ss} / (q \cdot Area \ of \ the \ capacitor) \tag{3.17}$$

## 3.4 MOSFET Measurements

#### 3.4.1 Fundamental Structure Concepts



Figure 3.14: Cross Section of MOSFET

Figure 3.14 shows the cross section of a MOSFET. And here are some assumptions used for MOSFET square law model:

- We assume that we have long channel (L>5  $\mu m$ ).
- We assume the mobility of electrons is constant in the channel.
- We assume that shape of the channel (same as the MOS inversion layer) as a function of the drain-source bias changes linearly (gradualchannel approximation, GCA).
- We assume that electric along the channel is the dominant electric field and the component of electric perpendicular to the channel inside the semiconductor is negligible. For long channel MOSFET, this is a fairly good approximation.



Drain to Source Voltage (Vds)

Figure 3.15: I - V Characteristics of MOSFET[2]

Figure 3.15 shows the I - V characteristic curve of MOSFET.

#### 3.4.2 Linear Regime

The I - V characteristic in linear regime is:

$$I_{ds} = \frac{\bar{\mu}C_0W}{L} \cdot \left[ (V_{gs} - V_{th})V_{ds} - \frac{V_{ds}^2}{2} \right]$$
(3.18)

where

 $I_{ds}$  is the drain-to-source current (A).

 $\bar{\mu}$  is the average mobility of carriers in the channel  $(cm^2/(V \cdot s))$ .

 $C_0$  is the capacitance per area of the MOS structure  $(F/cm^2)$ .

W is the MOSFET width  $(\mu m)$ .

L is the MOSFET gate length  $(\mu m)$ .

 $V_{gs}$  is the gate-to=source voltage (V).

 $V_{th}$  is the threshold voltage (V).

 $V_{ds}$  is the drain-to-source voltage (V).

#### 3.4.3 Linear-Saturation Transition

The above relationship represent the "linear regime" of the MOSFET I-V characteristic, which is shown in Figure 3.15.

In the regime of  $V_{ds} > V_{ds,sat}$ , where  $V_{ds,sat}$  represent the drain-to-source voltage, beyond which any increase in the value of  $V_{ds}$  would not bring about any further increase in the  $I_{ds}$ . This regime is called saturation regime.

#### 3.4.4 Saturation Regime

Saturation regime is the most important part of transistors operating regime where a flat characteristics (at least theoretically) allows the circuit designers use the transistors over a wide operating voltages. Therefore, most of our device parameter extraction is done in the saturation regime.

In order to find  $V_{ds,sat}$ , we realize that the onset of the saturation is where the relationship defined as square law model has a maximum  $I_{ds}$ , therefore in order to find  $V_{ds} = V_{ds,sat}$ , all we need to do is to differentiate Ids with respect to  $V_{ds}$  and solve for  $V_{ds}$ . We then find:

$$V_{ds} = V_{ds,sat} = V_{gs} - V_{th} (3.19)$$

Replacing  $V_{ds}$  in the square law formula above, we can find an expression for  $V_{ds,sat}$  as:

$$I_{ds,sat} = \frac{\bar{\mu}C_0W}{2L} \cdot (V_{gs} - V_{th})^2$$
(3.20)

As this expression indicates, The saturation current  $(I_{ds,sat})$  of a MOSFET is only a function of varying  $V_{qs}$  and not a function of  $V_{ds}$ .

#### 3.4.5 Extraction of Threshold Voltage & Average Channel Mobility in Saturation Regime

Taking square root of the previous I - V relationship, we have:

$$\sqrt{I_{ds,sat}} = \sqrt{\frac{\bar{\mu}C_0W}{2L}} \cdot (V_{gs} - V_{th}) \tag{3.21}$$

And the curve is shown as below:



**Figure 3.16:** Graph of  $\sqrt{I_{ds,sat}}$  vs  $V_{gs}$  of MOSFET

The value of  $V_{th}$  and  $\bar{\mu}$  can be found in Figure 3.16.

#### 3.4.6 Extraction of Saturation Velocity

There is also another way of looking at the saturation regime, and that is to attribute the saturation of the drain current to the carriers in the channel have reached their saturation velocity  $(V_S)$ .

Modifying the square law model to implement  $V_S$  in this equation, we need to replace  $V_S$  with:

$$V_S = \frac{\mu(V_{gs} - V_{th})}{2L}$$
(3.22)

And we can rewrite the square law model as:

$$I_{ds,sat} = V_S C_0 W (V_{gs} - V_{th})$$
(3.23)

Now if we plot  $I_{ds,sat}$  as a function of Vs we expect an almost linear relationship, which would enable us to extract  $V_S$  from the slope of this graph at higher  $V_{gs}$  values only:

The saturation velocity can be calculated from Figure 3.17.

#### 3.4.7 Extraction of Transconductance

The most important figure of merit of MOSFET is transconductance  $(g_m)$  which represents the conductance (inverse of the resistance) of the channel and is defined as:

$$g_m = \frac{\delta I_{ds}}{\delta V_{qs}}$$
 at  $V_{ds} = cte$  (3.24)



Figure 3.17: Graph of  $I_{ds,sat}$  vs  $V_{gs}$  of MOSFET



Figure 3.18: Graph of  $g_m$  vs  $V_{gs}$  of MOSFET in Saturation Regime

We are usually interested in the transconductance for the saturation regime, therefore, we approximate  $\frac{\delta I_{ds}}{\delta V_{gs}}$  with  $\frac{\Delta I_{ds}}{\Delta V_{gs}}$ , where  $\frac{\Delta I_{ds}}{\Delta V_{gs}} = \frac{I_{ds,2} - I_{ds,1}}{V_{gs,2} - V_{gs,1}}$ . Figure 3.18 shows the graph of  $g_m$  vs  $V_{gs}$  in saturation regime.

#### 3.4.8 Extraction of Output Conductance

The second most important figure of merit for DC characterization of a Field Effect Transistor is output conductance,  $g_d$  which is defined as:

$$g_{d} = \frac{\delta I_{ds}}{\delta V_{ds}}$$

$$g_{d} \approx \frac{\Delta I_{ds}}{\Delta V_{ds}} \quad at \ V_{gs} = cte \quad (3.25)$$

$$g_{d} \approx \frac{I_{ds,2} - I_{ds,1}}{V_{ds_{2}}V_{ds,1}}$$

Figure 3.20 shows the graph of  $g_d$  vs  $V_{ds}$  in saturation regime. Figure 3.21 shows the graph of  $g_d$  vs  $V_{gs}$  in saturation regime.



**Figure 3.19:** Graph of  $g_m$  vs  $V_{gs}$  & Extraction of  $g_{m,max}$  & the Corresponding  $V_{gs}$ 



Figure 3.20: Graph of  $g_d$  vs  $V_{ds}$  in Saturation Regime

#### 3.4.9 Voltage Swing

Figure 3.22 shows the graph of voltage swing, which represents the  $V_{gs}$  corresponding to  $(\frac{g_m}{g_d})_{max} - 10\%(\frac{g_m}{g_d})_{max}$ .

#### 3.4.10 Channel Conductance and Extraction of Mobility in Linear Regime

The channel conductance is defined as:

$$g_c = \frac{\delta I_{ds}}{\delta V_{ds}} \qquad at \ V_{gs} = cte$$

$$= \frac{\bar{\mu}C_0 W}{L} \cdot \left[ (V_{gs} - V_{th}) - V_{ds} \right] \qquad (3.26)$$

In the linear regime, since  $V_{ds}$  values are very small (i.e.  $V_{ds} < 0.2V$ ), and therefore we can approximate the above as:

$$g_{c} = \frac{\bar{\mu}C_{0}W}{L} \cdot (V_{gs} - V_{th})$$

$$g_{c} \approx \frac{\Delta I_{ds}}{\Delta V_{ds}} \quad at \ V_{gs} = cte$$

$$g_{c} \approx \frac{I_{ds,2} - I_{ds,1}}{V_{ds_{2}}V_{ds,1}}$$
(3.27)



Figure 3.21: Graph of  $g_d$  vs  $V_{gs}$  in Saturation Regime



Figure 3.22: Graph of Voltage Swing



Figure 3.23: Graph of  $g_c$  vs  $V_{gs}$  in Linear Regime

Figure 3.23 shows the  $g_c$  vs  $V_{gs}$  graph in linear regime.

## 4. Result

### 4.1 Resistor Measurements

#### 4.1.1 Sheet Resistor Measurement

Three resistors with different lengths of 400  $\mu m$ , 800  $\mu m$  and 5400  $\mu m$  are measured. The effective square number (N) for these resistors are:

$$N_{sh,400} = 440/10 = 44$$

$$N_{sh,800} = 840/10 = 84$$

$$N_{sh,5400} = 5440/10 - 17 \times 0.44 = 536.52$$
(4.1)

The data and the calculation result are shown in Table 4.1.

| $L \ (\mu m)$              | 400     | 800     | 5400     |
|----------------------------|---------|---------|----------|
| $W~(\mu m)$                | 10      | 10      | 10       |
| U(V)                       | 0.5     | 0.5     | 0.5      |
| I (mA)                     | 1.988   | 1.016   | 0.181    |
| $R_{measured} (\Omega)$    | 251.509 | 492.126 | 2762.431 |
| $N~(\mu m)$                | 44      | 84      | 536.52   |
| $R_{sh} (\Omega/\Box)$     | 5.716   | 5.859   | 5.147    |
| $R_{sh,avg} (\Omega/\Box)$ |         | 5.574   |          |

 Table 4.1: Sheet Resistance Measurements

#### 4.1.2 Transfer Line Method

Table 4.2 shows the resistance of the transfer line.

Figure 4.1 shows the resistance vs distance relationship for TSM20. The linear function is:

$$y = 0.2151x + 9.602 \tag{4.2}$$

The  $R^2$  fitting value is pretty high, which means the linearity of the curve is good. The slope of it is 0.2151 ( $\Omega/\mu m$ ) and the intercept is 9.602 ( $\Omega$ ).

| Pad Section | Distance $(\mu m)$ | U(V) | I(mA) | Resistance $(\Omega)$ |
|-------------|--------------------|------|-------|-----------------------|
| 4-5         | 60                 | 0.5  | 22.59 | 22.13                 |
| 5-6         | 100                | 0.5  | 15.97 | 31.31                 |
| 6-7         | 200                | 0.5  | 9.47  | 52.80                 |
| 7-8         | 300                | 0.5  | 6.71  | 74.56                 |
| 8-9         | 380                | 0.5  | 5.50  | 90.93                 |

 Table 4.2:
 Transfer Line Resistance Measurements





Figure 4.1:  $R(\Omega)$  vs  $d(\mu m)$  Relationship for TLM20

Then we can calculate the  $R_C$  and  $R_{sh}$  values as:

$$R_{C} = 9.602/2 = 4.801 \ (\Omega)$$
  

$$Slope = R_{sh}/Z = 0.2151 \ (\Omega/\mu m)$$
  

$$R_{sh} = 0.2151 \times 20 = 4.302 \ (\Omega/\Box)$$
(4.3)

## 4.2 PN Diode Measurements

#### 4.2.1 Built-in Voltage Measurement



Figure 4.2: Measured Current I (A) vs Applied Voltage V (V) for Diode #1



Figure 4.3: Measured Current I (A) vs Applied Voltage V (V) for Diode #2

Figure 4.2 and 4.3 shows the measured current and applied voltage relationship for both two PN diodes. The two linear functions can be used to approximately calculate the built-in potential  $V_{bi}$ .

Table 4.3 shows the calculated results, the built-in potential is 0.214 (V) for diode #1 and 0.217 (V) for diode #2.

|              | Diode #1         | Diode $#2$       |
|--------------|------------------|------------------|
| Equation     | y=0.0028x-0.0006 | y=0.0023x-0.0005 |
| $V_{bi}$ (V) | 0.214            | 0.217            |

 Table 4.3:
 Built-in Potential V<sub>bi</sub> Calculation

#### 4.2.2 Ideality Factor Measurement

After transforming the current to the natural logarithm value, we can get Figure 4.4 and 4.5.



Figure 4.4: Measured Current ln(I) (A) vs Applied Voltage V (V) for Diode #1

For each curve in Figure 4.4 and 4.5, we can divide it into three parts, and for each part, it can fitted by a linear function. For each linear function, we can get a pair of ideality factor n and reverse saturation current  $I_0$  based on the equation:

$$ln(I) = ln(I_0) + \frac{qV}{nkT}$$

$$\tag{4.4}$$

We can have the solution that:

$$slope = \frac{q}{nkT}$$
$$n = \frac{q}{kT} \times \frac{1}{slope}$$
(4.5)

 $ln(I_0)$  is the intercept of y axis.



Figure 4.5: Measured Current ln(I) (A) vs Applied Voltage V (V) for Diode #2

**Table 4.4:** Ideality Factor  $n & Reverse Saturation Current I_0 Calculation$ 

|          | $n_1$ | $n_2$ | $n_3$  | $ln(I_0)(A)$ | $I_0 (nA)$ |
|----------|-------|-------|--------|--------------|------------|
| Diode #1 | 0.717 | 2.760 | 21.443 | -16.599      | 61.82      |
| Diode #2 | 0.714 | 2.828 | 21.391 | -16.857      | 47.77      |

Table 4.4 shows the ideality factor n and reverse saturation current  $I_0$ . For two diodes, the ideality factors are similar, and for reverse current, they are both in (nA) level, which make sense.

## 4.3 MOS Capacitor Measurements

### 4.3.1 MOS Capacitor C-V Characteristics Measurement



Figure 4.6: Capacitance C(F) vs Bias Voltage V(V) for MOS Capacitor #1

The MOS capacitor C - V characteristics are shown in Figure 4.6 and 4.7. Based on the curves, we can calculate the value oxide capacitance  $C_{SiO_2}$ , silicon capacitance  $C_{Si}$  and the series capacitance  $C_{sf}$  based on the equations below:

$$C_{SiO_2} = C_{max}$$

$$C_{Si} = C_{min}$$

$$C_{sf} = \frac{C_{Si} \cdot C_{SiO_2}}{C_{Si} + C_{SiO_2}}$$
(4.6)

Table 4.5 shows the value oxide capacitance  $C_{SiO_2}$ , silicon capacitance  $C_{Si}$  and the series capacitance  $C_{sf} C_{Si}$  for both two MOS capacitors.

**Table 4.5:** Oxide Capacitance  $C_{SiO_2}$  & Silicon Capacitance  $C_{Si}$  Calculation

|                  | $C_{SiO_2} \ (pF)$ | $C_{Si} \ (pF)$ | $C_{sf} \ (pF)$ |
|------------------|--------------------|-----------------|-----------------|
| MOS Capacitor #1 | 92.6               | 55.5            | 34.7            |
| MOS Capacitor #2 | 98.8               | 57.7            | 36.4            |



Figure 4.7: Capacitance C (F) vs Bias Voltage V (V) for MOS Capacitor #2

#### 4.3.2 Extraction of Oxide Thickness from C-V Data

Since we already have the value of  $C_{SiO_2}$ , we can derive the value of the thickness the oxide layer  $t_{ox}$  based on the equation:

$$C_{SiO_2} = \frac{\epsilon_{ox}\epsilon_0 A}{t_{ox}}$$

$$t_{ox} = \frac{\epsilon_{ox}\epsilon_0 A}{C_{SiO_2}}$$
(4.7)

where

 $\epsilon_{ox}$  is the oxide (SiO<sub>2</sub>) relative permittivity, which is about 3.9.  $\epsilon_0$  is the permittivity of the free space, which is about  $8.85 \times 10^{-14}$  (*F/cm*). *A* is the area of the capacitor, here since it's a square, so its value is  $1.6 \times 10^{-3}$  (*cm*<sup>2</sup>). Then for both MOS capacitors #1 and #2, we can have the value of  $t_{ox}$ :

$$t_{ox,1} = \frac{3.9 \times 8.85 \times 10^{-12} \times 1.6 \times 10^{-3}}{92.6 \times 10^{-12}} = 5.964 \times 10^{-6} \ (cm) = 596.4 \ (A)$$
  
$$t_{ox,2} = \frac{3.9 \times 8.85 \times 10^{-12} \times 1.6 \times 10^{-3}}{98.8 \times 10^{-12}} = 5.589 \times 10^{-6} \ (cm) = 558.9 \ (A)$$

#### 4.3.3 Extraction of $N_{sub}$

For the value of  $N_{sub}$  and  $N_A$ , we can apply iteration function to based on the equations:

$$N_{sub} = \frac{4\phi_f C_{sf}^2}{q \times \epsilon_{Si} \times \epsilon_0 \times A^2}$$

$$N_{sub} = N_A$$

$$\phi_f = \frac{kT}{q} \times ln(\frac{N_A}{n_i}) \qquad For \ p-type \ wafer$$

$$(4.9)$$

where

 $\epsilon_{Si}$  is the relative permittivity of silicon, whose value is about 11.68. For MOS capacitor #1, the iteration sequence is as in Table 4.6:

| $N_A \ (cm^{-3})$     | $N_{sub} \ (cm^{-3})$ |
|-----------------------|-----------------------|
| $1.00 \times 10^{15}$ | $3.26 \times 10^{15}$ |
| $3.26 \times 10^{15}$ | $3.61 \times 10^{15}$ |
| $3.61 \times 10^{15}$ | $3.64 \times 10^{15}$ |
| $3.64 \times 10^{15}$ | $3.64 \times 10^{15}$ |

 Table 4.6: Iteration for MOS Capacitor #1

The value of  $N_{sub}$  is  $3.64 \times 10^{15}$  (cm<sup>-3</sup>) and  $\phi_f$  is 0.321 (V). For MOS capacitor #2, the iteration sequence is as in Table 4.7:

**Table 4.7:** Iteration for MOS Capacitor #2

| $N_A \ (cm^{-3})$     | $N_{sub} \ (cm^{-3})$ |
|-----------------------|-----------------------|
| $1.00 \times 10^{15}$ | $3.59 \times 10^{15}$ |
| $3.59 \times 10^{15}$ | $4.00 \times 10^{15}$ |
| $4.00 \times 10^{15}$ | $4.04 \times 10^{15}$ |
| $4.04 \times 10^{15}$ | $4.04 \times 10^{15}$ |

The value of  $N_{sub}$  is  $4.04 \times 10^{15}$  (cm<sup>-3</sup>) and  $\phi_f$  is 0.323 (V).

#### 4.3.4 Extraction of Oxide Charge

For the oxide charge, we should firstly calculate the Deby length  $L_d$ , for both MOS Capacitors #1 and #2,

$$L_{d,1} = \sqrt{\frac{\epsilon_{Si}\epsilon_0 kT}{q^2 N_{A,1}}} = 6.769 \times 10^{-6} \ (cm)$$

$$L_{d,2} = \sqrt{\frac{\epsilon_{Si}\epsilon_0 kT}{q^2 N_{A,2}}} = 6.425 \times 10^{-6} \ (cm)$$
(4.10)

Then we can calculate the value of flat-band capacitance  $C_{FB}$ , which are:

-1

$$C_{FB,1} = \frac{1}{\frac{1}{C_{OX}} + \frac{L_{d,1}}{\epsilon_{Si}\epsilon_{0}A}} = 67.2 \ (pF)$$

$$C_{FB,2} = \frac{1}{\frac{1}{\frac{1}{C_{OX}} + \frac{L_{d,2}}{\epsilon_{Si}\epsilon_{0}A}}} = 71.4 \ (pF)$$
(4.11)

Based on the linear fitting equation in Figure 4.6 and 4.7, we can calculate the values of

 $V_{FB}$  for both MOS capacitors #1 and #2:

$$y_{1} = -2 \times 10^{-11} \times x_{1} + 3 \times 10^{-11}$$

$$C_{FB,1} = -2 \times 10^{-11} \times V_{FB,1} + 3 \times 10^{-11}$$

$$\Rightarrow V_{FB,1} = -1.86 (V)$$

$$y_{2} = -2 \times 10^{-11} \times x_{2} + 3 \times 10^{-11}$$

$$C_{FB,2} = -2 \times 10^{-11} \times V_{FB,2} + 3 \times 10^{-11}$$

$$\Rightarrow V_{FB,2} = -2.07 (V)$$

$$(4.12)$$

Then for the work functions, we can calculate them for both metal and silicon based on equations below:

$$\phi_{S,1} = \chi_{Si} + \frac{E_g}{2} + \phi_{f,1} = 4.05 + \frac{1.12}{2} + 0.321 = 4.931 \ (V)$$
  

$$\phi_{MS,1} = \phi_M - \phi_{S,1} = 4.10 - 4.931 = -0.831 \ (V)$$
  

$$\phi_{S,2} = \chi_{Si} + \frac{E_g}{2} + \phi_{f,2} = 4.05 + \frac{1.12}{2} + 0.323 = 4.933 \ (V)$$
  

$$\phi_{MS,2} = \phi_M - \phi_{S,2} = 4.10 - 4.931 = -0.833 \ (V)$$
  
(4.13)

The charges on the surface can be calculated as:

$$Q_{ss,1} = (V_{FB,1} - \phi_{MS,1}) \times C_{SiO_{2},1}$$
  
= [-1.86 - (-0.831)] × 92.6 × 10<sup>-12</sup> = -9.529 × 10<sup>-11</sup> (C)  
$$Q_{ss,2} = (V_{FB,2} - \phi_{MS,2}) \times C_{SiO_{2},2}$$
  
= [-2.07 - (-0.833)] × 98.8 × 10<sup>-12</sup> = -1.222 × 10<sup>-10</sup> (C) (4.14)

Therefore, the value of oxide charge can be derived as:

$$N_{f,1} = \frac{Q_{ss,1}}{q \times A} = \frac{-9.529 \times 10^{-11}}{-1.60 \times 10^{-16} \times 1.60 \times 10^{-3}} = 3.722 \times 10^{11} \ (cm^{-2})$$

$$N_{f,2} = \frac{Q_{ss,2}}{q \times A} = \frac{-1.222 \times 10^{-10}}{-1.60 \times 10^{-16} \times 1.60 \times 10^{-3}} = 4.773 \times 10^{11} \ (cm^{-2})$$
(4.15)



## 4.4 MOSFET Measurements

#### 4.4.1 I-V Characteristic Curve

The  $I_{ds} - V_{ds}$  characteristics curves of MOSFET are shown below, which include  $L = 16\mu m$ ,  $W = 40\mu m$  MOSFET and  $L = 16\mu m$ ,  $W = 80\mu m$  MOSFET in both linear and saturation regimes.



**Figure 4.8:** *I-V Curve of MOSFET with*  $L=16 \ \mu m$ ,  $W=40 \ \mu m$  *in Linear Regime* 



**Figure 4.9:** *I-V Curve of MOSFET with L=16 \mu m, W=40 \mu m in Saturation Regime* 





Figure 4.10: I-V Curve of MOSFET with  $L=16 \ \mu m$ ,  $W=80 \ \mu m$  in Linear Regime



**Figure 4.11:** *I-V Curve of MOSFET with*  $L=16 \ \mu m$ ,  $W=80 \ \mu m$  *in Saturation Regime* 

#### 4.4.2 Extraction of Threshold Voltage and Average Channel Mobility

The  $I_{ds,sat}$ ,  $\sqrt{I_{ds,sat}}$  and  $V_{gs}$  table is given below:

殿

| $V_{gs}(V)$ | $I_{ds}$ (A) for $W = 40 \mu m$ | $\sqrt{I_{ds}} \ (A^{0.5})$ for $W = 40 \mu m$ | $I_{ds}$ (A) for $W = 80 \mu m$ | $\sqrt{I_{ds}} \ (A^{0.5})$ for $W = 80 \mu m$ |
|-------------|---------------------------------|------------------------------------------------|---------------------------------|------------------------------------------------|
| 0           | $4.17 \times 10^{-4}$           | 0.0204                                         | $5.10 \times 10^{-4}$           | 0.0226                                         |
| 1           | $7.14 \times 10^{-4}$           | 0.0267                                         | $9.96 \times 10^{-4}$           | 0.0316                                         |
| 2           | $1.10 \times 10^{-3}$           | 0.0332                                         | $1.63 \times 10^{-3}$           | 0.0404                                         |
| 3           | $1.55 \times 10^{-3}$           | 0.0394                                         | $2.38 \times 10^{-3}$           | 0.0488                                         |
| 4           | $2.06 \times 10^{-3}$           | 0.0454                                         | $3.22 \times 10^{-3}$           | 0.0567                                         |
| 5           | $2.62 \times 10^{-3}$           | 0.0512                                         | $4.13 \times 10^{-3}$           | 0.0643                                         |
| 6           | $3.22 \times 10^{-3}$           | 0.0568                                         | $5.11 \times 10^{-3}$           | 0.0715                                         |
| 7           | $3.86 \times 10^{-3}$           | 0.0621                                         | $6.15 \times 10^{-3}$           | 0.0784                                         |
| 8           | $4.52 \times 10^{-3}$           | 0.0673                                         | $7.22 \times 10^{-3}$           | 0.0850                                         |
| 9           | $5.22 \times 10^{-3}$           | 0.0723                                         | $8.33 \times 10^{-3}$           | 0.0912                                         |
| 10          | $5.94 \times 10^{-3}$           | 0.0770                                         | $9.46 \times 10^{-3}$           | 0.0973                                         |
| 11          | $6.69 \times 10^{-3}$           | 0.0818                                         | $1.06 \times 10^{-2}$           | 0.1031                                         |
| 12          | $7.45 \times 10^{-3}$           | 0.0863                                         | $1.19 \times 10^{-2}$           | 0.1089                                         |

Table 4.8:  $I_{ds,sat}$ ,  $\sqrt{I_{ds,sat}}$  and  $V_{gs}$  Relationship



Figure 4.12:  $\sqrt{I_{ds,sat}}$  and  $V_{gs}$  Relationship

Figure 4.12 shows the  $\sqrt{I_{ds,sat}}$  and  $V_{gs}$  relationship curve and two linear fitting functions. For MOSFET #1, the linear equation is y = 0.0055x + 0.0224. The threshold voltage  $V_{th,1}$  is the intercept of X-axis, which is -4.07 (V). Then the thickness of the oxide is the average in MOS capacitor part, which is 577.7 (A). And the oxide capacitance is

$$C_{ox} = \frac{\epsilon_{ox}\epsilon_0}{t_{ox}} = 5.97 \times 10^{-8} \ (F/cm^2)$$
(4.16)

Then the mobility is:

$$Slope_{1} = \sqrt{\frac{\mu_{1}C_{ox}W}{2L}} = 0.055$$

$$\mu_{1} = \frac{2*16*0.0069^{2}}{5.97 \times 10^{-8} \times 40} = 637.99 \ (cm^{2}/V \cdot s)$$
(4.17)

For MOSFET #2, the linear equation is y = 0.0072x + 0.0263. The threshold voltage  $V_{th,2}$  is the intercept of X-axis, which is -3.65 (V). Then the mobility is:

$$Slope_{2} = \sqrt{\frac{\mu_{2}C_{ox}W}{2L}} = 0.0072$$

$$\mu_{2} = \frac{2*16*0.0072^{2}}{5.97 \times 10^{-8} \times 40} = 694.67 \ (cm^{2}/V \cdot s)$$
(4.18)

### 4.4.3 Saturation Velocity $(V_S)$

The saturation velocity calculation is based on the equation:

$$I_{ds,sat} = v_{sat}C_{ox}W(V_{gs} - V_{th})$$

$$\tag{4.19}$$



Figure 4.13:  $I_{ds,sat}$  and  $V_{gs}$  Relationship

Figure 4.13 shows the  $I_{ds,sat}$  and  $V_{gs}$  relationship. For  $W = 40 \ \mu m$  case,

$$y_1 = 0.0006x_1 - 9 \times 10^{-5}$$
  

$$Slope_1 = v_{sat,1}C_{ox}W$$
  

$$v_{sat,1} = \frac{Slope_1}{C_{ox}W} = \frac{0.0006}{5.97 \times 10^{-8} \times 4 \times 10^{-3}} = 2.51^6 \ (cm/s)$$
(4.20)

For  $W = 80 \ \mu m$  case,

$$y_{2} = 0.001x_{1} - 0.0003$$

$$Slope_{2} = v_{sat,2}C_{ox}W$$

$$v_{sat,2} = \frac{Slope_{2}}{C_{ox}W} = \frac{0.001}{5.97 \times 10^{-8} \times 8 \times 10^{-3}} = 2.10^{6} \ (cm/s)$$
(4.21)

## 4.4.4 Transconductance $(g_m)$ of MOSFET



Figure 4.14: Transconductance  $g_m$  and  $V_{gs}$  Relationship

The table below gives the value of  $g_m$  and corresponding  $V_{gs}$  for both two MOSFETs. Figure 4.14 shows the transconductance  $g_m$  and  $V_{gs}$  relationship. From the figure, we can find that the maximum  $g_m$  for the two MOSFETs are:

$$g_{m,max,40\mu m} = 0.77 \ mS \qquad at \ V_{gs} = 11 \ (V)$$
  

$$g_{m,max,80\mu m} = 1.23 \ mS \qquad at \ V_{gs} = 11 \ (V)$$
(4.22)



**Table 4.9:** Transconductance  $g_m \ \mathcal{E} V_{gs}$ 

## 4.4.5 Output Conductance $(g_d)$

In this section, I use the two  $I_{ds}$  value at  $V_{ds} = 14 V$  and 4V to calculate the  $g_d$  value. Table below shows the  $g_d$  and  $V_{gs}$  relationship.

| $V_{gs}(V)$ | $g_{d,40\mu m}~(mS)$ | $g_{d,80\mu m} \ (mS)$ |
|-------------|----------------------|------------------------|
| 0           | 0.0118               | 0.0102                 |
| 1           | 0.0151               | 0.0150                 |
| 2           | 0.0195               | 0.0210                 |
| 3           | 0.0245               | 0.0289                 |
| 4           | 0.0340               | 0.0424                 |
| 5           | 0.0522               | 0.0693                 |
| 6           | 0.0783               | 0.1092                 |
| 7           | 0.1110               | 0.1591                 |
| 8           | 0.1490               | 0.2171                 |
| 9           | 0.1910               | 0.2804                 |
| 10          | 0.2370               | 0.3496                 |
| 11          | 0.3010               | 0.4236                 |

Table 4.10: Output Conductance  $g_d \ & V_{gs}$ 

Figure 4.15 shows the output conductance  $g_d$  and  $V_{gs}$  relationship. The maximum value of  $g_d$  is as:

$$g_{d,max,40\mu m} = 0.3010 \ mS \qquad at \ V_{gs} = 11 \ (V)$$
  

$$g_{d,max,80\mu m} = 0.4236 \ mS \qquad at \ V_{gs} = 11 \ (V)$$
(4.23)



Figure 4.15: Output Conductance  $g_d$  and  $V_{gs}$  Relationship

## 4.4.6 $\frac{g_m}{g_d}$ and Voltage Swing



Figure 4.16:  $\frac{g_m}{g_d}$  and  $V_{gs}$  Relationship

Figure 4.16 shows the  $\frac{g_m}{g_d}$  and  $V_{gs}$  relationship. For 40  $\mu m$  device, the maximum value of  $\frac{g_m}{g_d}$  value is 27.73, and its 90% value is 24.95, however, since the curve doesn't shows the other side, the estimated voltage swing is 2 (V). For 80  $\mu m$  device, the maximum value of  $\frac{g_m}{g_d}$  value is 47.76, and its 90% value is 42.98, the estimated voltage swing is also 2 (V).

## 4.4.7 Channel Conductance $(g_c)$ and Extraction of Mobility in Linear Regime



Figure 4.17:  $g_c$  and  $V_{gs}$  Relationship

Figure 4.17 shows the conductance  $g_c$  to  $V_{gs}$  relationship in linear region for two MOS-FETs. Here I used  $V_{ds,2} = 0.1 V$  and  $V_{ds,1} = 0 V$  to calculate  $g_c$ . The mobility can be obtained by applying equations:

$$g_{c} = \frac{\mu_{lin}C_{o}W}{L}(V_{gs} - V_{th})$$

$$\mu_{lin} = \frac{L \times Slope}{C_{o}W}$$
(4.24)

Then for 40  $\mu m$  MOSFET, the mobility is  $\mu_{lin,1} = 536 \ (cm^2/V \cdot s)$  and  $V_{th,1} = -5 \ (V)$ . For 80  $\mu m$  MOSFET, the mobility is  $\mu_{lin,2} = 335 \ (cm^2/V \cdot s)$  and  $V_{th,2} = -6 \ (V)$ .

## 5. Discussion

### 5.1 Resistor

For sheet resistance measurements,  $R_{sh}$  of  $R_{400}$ ,  $R_{5400}$  are almost the same, which is around 5.5 ( $\Omega/\Box$ ), which means that it has a good consistency and the doping level are uniform in this region. However, for the TLM-20 case, the value of  $R_{sh}$  is much smaller than the previous one, perhaps its because the insufficient doping concentration in this area and the bend part effect, or may be it is because the method we use eliminated some of the effect of resistance in the measurement circuit.

### 5.2 PN Diode

For PN diode part, the I - V curve shows a good electric characteristic of the device as it in theory. The electric parameters extracted from the two diodes are quite similar, which shows the uniformity of the wafer in diode part. The built-in potential  $V_{bi}$  of both two diodes are about 0.214 V, which is a reasonable value. And for ideality factor n,  $n_3$  is much more larger than  $n_1$  and  $n_2$  in both cases, which is because of the imperfect process during fabrication. The reverse saturation current  $I_0$  is in nA level, which is a decent value.

#### 5.3 MOS Capacitor

For MOS capacitors, the graph of C-V is not good because that the tail part goes up when the bias voltage get higher. For extracted parameters, the thickness, doping concentration and oxide charge value are similar for the two capacitors. For the thickness of oxide, it's about 600 (A), for  $N_{sub}$ , it's in 10<sup>15</sup> level, and for  $N_f$ , it's in 10<sup>11</sup> level, are these values are in reasonable range.

### 5.4 MOSFET

For MOSFET part, the I-V curves look perfect as in theory. However, when calculating the value of transconductance  $g_m$ , output conductance  $g_d$ , its value are kind of weird and its trend is different with graph in theory. It seems that the peak value of  $V_{gs}$  for these two parameters are larger than the measured range. Therefore, for the voltage swing part, there is no way to calculate it, then the estimation and some imagination are used for that section. For the other calculated parameters, the value of them are reasonable.

## 6. Conclusion

In EE504L, we can not only gain knowledge from the slides in the class but also in the lab session and get a deep experience in industry fabrication process.

In class we learned theoretical knowledge about IC fabrication, IC testing, CMOS fabrication process and advanced CMOS technology while in lab session, we can get hand-on experience and building our own wafer. In the lab we can learn the fabrication process step by step, which could help us to get a better command of the knowledge learned in class.

Prof. Kian Kaviani has valuable experience in industry which give us a clear view of semiconductor industry and also help us to learn knowledge better. TA Jihan Chen is a definitely a fantastic TA with patience and technique, he helped us a lot in the lab session.

# References

- [1] Ming Hsieh Electrical Engineering Dept. USC Viterbi School of Engineering. Prof. Kian Kaviani. Week-15a-testing-i-spring 2019. 2019.
- [2] Ming Hsieh Electrical Engineering Dept. USC Viterbi School of Engineering. Prof. Kian Kaviani. Week-15b-testing-ii-spring 2019. 2019.
- [3] Ming Hsieh Electrical Engineering Dept. USC Viterbi School of Engineering. Prof. Kian Kaviani. Complete lab manual-spring 2019. 2019.