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Abstract—It is spring now, which is a good time to fly kites.
However, it is quite difficult to keep the kite in a steady state
with a wind force. This article will give the explicit equations to
model the system and apply the concept of PID Control to get the
solution. Detailed mechanical analysis equations and simulation
codes will be given. In addition, this paper will analyze how the
value of K will affect the variance of the result.

Index Terms—PID Control, Wind force, Kite.

I. INTRODUCTION

This article gives the general solution of keep a kite in sky
under wind force. This report is divided into five parts.

Part I gives the content and introduction of the whole article.
In part II, it will give a detail procedure of problem

formulating, which contains three sections: General Intro-
duction, Constraints and Assumptions, Mechanical Equations,
Linearized Model and Some Details About RK4.

Part III gives the simulation code.
Part IV will give the simulation result, which include two

parts. And it will also give some interpretations of the plots.
Part V is the conclusion, it will summarize the highlights

of this article.

II. PROBLEM FORMULATION

Before we go through the details of the model, some
intuitions and constraints will be declared in advance.

A. General Introduction

The input of the system is the force imposed by hand in both
tangential and normal directions. The output is the length of
the rope and the angle between the rope and the horizontal
level. The aim of the project is to apply the concept of PID
to control the input signals so that the final steady state can
be adjusted to the presupposed value. It will also give the
simulation result of the code and analyze it to give a optimal
control parameters.

Fig. 1. General Picture of a Kite System

Figure 1 shows the general scene of a kite system. In the
picture, the controller is trying to control the kite in the sky,
however, it is hard for him to adjust the kite at a steady state
as the parameters he wants. There are two input signals, they
are tangential force and normal force. The outputs contains
the length of the rope and the angle between rope and the
horizontal level. There are four force imposed on the kite,
they are gravity, tangential force on the rope, the normal force
on the rope and the forced imposed by wind. The controller
is moving at a uniform velocity of v. Detailed parameters
and some mechanical constraint will be discussed in part two:
Model Construction.

B. Constraints and Assumptions

Fig. 2. Detail of The Kite

First assumption is the angle of the kite. As an intuition,
why a kite is flying in the sky, the plane of it should be
perpendicular to the rope like the picture showed in Figure
2. Under this assumption, the angle of the rope will also has
an effect on the angle of the kite, further more, it will affect
the wind force imposed on the kite.

Second one is an assumption on the controller, in this scene,
the controller is moving at a uniform velocity as 1m/s.

Third assumption is about the natural environment. The
wind force is proportional to the absolute velocity of the
kite, but there is an extra force F0, which follows a normal
distribution.



C. Mechanical Equations

The key part of the system is to analyze the force imposed
on the kite and combine it with the assumptions given above.

Fig. 3. Mechanical Analysis of The Kite

Figure 3 shows the mechanical analysis of the kite. Different
from the traditional method of mechanical analysis at x-
y plane, in this model, I did it in tangential and normal
directions. The equations are given:

Fn = Fwind −mg sin(θ)− Fni (1)

Ft = −mg cos(θ) + Fti (2)

For simplicity, the gravity constant is given as g = 10m/s2

and the mass of the kite is m = 1kg.
Fni and Fti in the two equations are the inputs. In Equation

(1), it involves a unknown term Fwind, this term is related to
the absolute value of the kite, the equation that describe it is:

Fwind = Kwind ∗
√
vx2 + vy2 + F0 (3)

There gives Four more unknown terms, Kwind, vx, Vy and
F0. Kwind is the coefficient to convert the velocity to the
force. It is proportional to the area of the kite, in this system,
it is taken as:

Kwind = 10(N ∗ s2/m2) (4)

vx and vy are to describe the absolute value of the kite, they
are given as:

vx = vcontroller − l̇ cos(θ) + lθ̇ sin(θ) (5)

vy = l̇ sin(θ) + lθ̇ cos(θ) (6)

The velocity of the controller is given as vcontroller =
1m/s, which is a constant.

F0 is the natural force, and since it is unpredictable, it is
given as the normal distribution. The mean value is 10N, and
the variance is 1N2. It also can be seen as a disturbance to the
system.

At last, the acceleration of the kite in tangential and normal
directions can be described as:

l̈ =
Fn
m

(7)

θ̈ =
Ft
ml

(8)

The state of the system is z=[l; θ; l̇; θ̇]T . And with the help
of Equation (1)− (8), the model is completed.

D. Linearized Model

The model given above is quite difficult to calculate, that
is say, it will be quite slow for a computer to calculate the
numerical solution. To make a better performance in calcula-
tion speed, a linearized model is needed. Nevertheless, it will,
inevitably, dwindle the accuracy of the result. In linearized
model, some simplification is applied to the Equation (1)−(8).
And to follow the form of a traditional ODE function given
as:

ż = Az +Bu (9)

The simplification includes: sin(δθ) = δθ and cos(δθ) = 1
for δθ is a small value. The two coefficient matrices are given
as

A =


0 0 0 g cos(θs)

l2

0 0 −g cos(θs) g sin(θs)
l

1 0 −Kwind cos(θs)
m 0

0 1 Kwindl sin(θs)
m 0

 (10)

B =


0 0
0 0

− 1
m 0
0 1

m

 (11)

The state z and the input signal u is given as:

z =


l
θ

l̇

θ̇

 (12)

u =

(
Fni
Fpi

)
(13)

Both of the two models can be programmed in MATLAB
and calculated numerically with the concept of RK4.



E. Some Details About RK4

Fig. 4. RK4 Algorithm

RK4 algorithm can be used to calculate the numerical solu-
tion of a differential equation. And it follows the calculation
tactic shown in Figure 4. However, the detailed program will
depend on the case of the differential equation.

III. SOLUTION METHOD

The model is applied in MATLAB and it contains three
parts. In this section, I used the non-linear model to get a
better accuracy, but it may cause a larger processing time
consumption.

A. ODE Function

1 f u n c t i o n [ dz ] = ode ( t , z , v , Ft , Fn )
%P a r a m e t e r S e t t i n g

3 m=1;
g =10;

5 l =z ( 1 ) ;
t h e t a =z ( 2 ) ;

7 d l =z ( 3 ) ;
d t h e t a =z ( 4 ) ;

9

%The v a l u e o f n a t u r a l wind i s a normal
d i s t r i b u t i o n around 10

11 %The v a r i a n c e o f F0 i s a d j u s t a b l e
F0=random ( ’ norm ’ , 1 0 , 1 , 1 , 1 ) ;

13

%S e t t h e v a l u e o f dz
15 dz ( 1 , 1 ) = d l ;

dz ( 2 , 1 ) = d t h e t a ;
17

%The v e l o c i t y −>f o r c e c o e f f i c i e n t
19 K wind =10;

21 %V e l o c i t y o f t h e k i t e
vx=v−d l ∗ cos ( t h e t a ) + l ∗ d t h e t a ∗ s i n ( t h e t a ) ;

23 vy= d l ∗ s i n ( t h e t a ) + l ∗ d t h e t a ∗ cos ( t h e t a ) ;

25 %F wind
F wind=K wind∗ s q r t ( vx ˆ2+ vy ˆ 2 ) +F0 ;

27

%C e n t r i p e t a l f o r c e and t a n g e n t i a l f o r c e on t h e
k i t e

29 F n=F wind−m∗g∗ s i n ( t h e t a )−Fn ;
F t=−m∗g∗ cos ( t h e t a ) + F t ;

31

%C e n t r i p e t a l and t a n g e n t i a l a c c e l e r a t i o n
33 dz ( 3 , 1 ) =F n /m;

dz ( 4 , 1 ) = F t /m/ l ;
35 end

./code/ode.m

This program describe the whole system, which converts the
mathematical equations to the code. The equations are non-
linear, but the simulation result will have higher accuracy.

B. RK4

1 f u n c t i o n [ x , y ] = RK4( ufunc , y0 , h , a , b , Ft , Fn , v )
%S e t S t ep

3 n= f l o o r ( ( b−a ) / h ) ;
%I n i t i a l Time

5 x ( 1 ) =a ;
%I n i t i a l i z a t i o n o f y

7 y ( : , 1 ) =y0 ;
f o r i =1 : n

9 %Time s t e p p i n g
x ( i +1)=x ( i ) +h ;

11 %Apply RK4 Algor i t hm Approx ima t ion
k1= ufunc ( x ( i ) , y ( : , i ) , v , Ft , Fn ) ;

13 k2= ufunc ( x ( i ) +h / 2 , y ( : , i ) +h∗k1 / 2 , v , Ft , Fn ) ;
k3= ufunc ( x ( i ) +h / 2 , y ( : , i ) +h∗k2 / 2 , v , Ft , Fn ) ;

15 k4= ufunc ( x ( i ) +h / 2 , y ( : , i ) +h∗k3 , v , Ft , Fn ) ;
%Add up a l l t h e components

17 y ( : , i +1)=y ( : , i ) +h / 6 ∗ ( k1+2∗k2+2∗k3+k4 ) ;
end

./code/RK4.m

This program is for find the numerical solution of a differential
equation. The input of this function is relate to the model
which has been presented in ode.m. The numshoot is given as
5, when it is given a larger value, the accuracy of the numerical
solution of the ODE function will be improved, but the time
consumption will also be increased dramatically.

C. Kite

c l e a r a l l
2 %%P a r a m e t e r S t a t e m e n t

m= 0 . 5 ;
4 g =10;

6 %%I n i t i a l i z a t i o n
l =7;

8 t h e t a = p i / 3 ;
d l =0 ;

10 d t h e t a =0;
s t a t e 0 =[ l ; t h e t a ; d l ; d t h e t a ] ;

12

%%S i m u l a t i o n
14 %Timing I n i t i a l i z a t i o n

N=10000;
16 T=20;

d e l t =T /N;
18 numshoot =5 ;

20 %S t a t e / C o n t r o l I n i t i a l i z a t i o n
s t a t e = z e r o s ( 4 ,N+1) ;

22 s t a t e ( : , 1 ) = s t a t e 0 ;
x m= z e r o s ( 1 ,N+1) ;

24 x m ( 1 ) =0;
F t = z e r o s ( 1 ,N) ;

26 Fn= z e r o s ( 1 ,N) ;

28 %The v e l o c i t y o f c o n t r o l l e r i s 1m/ s
v =1;

30

%%S e t up PID c o n t r o l
32 %S e t Kt

%Kpt=−10−−−−20
34 Kpt=−15;

Kdt=−8;
36 K i t =−0.0001;



38 %S e t Kt
%Kpn=5−−−15

40 Kpn =10;
Kdn =2;

42 Kin = 0 . 0 0 0 0 1 ;

44 %Get e r r o r
i e = [ 0 ; 0 ] ;

46 %The i t e r a t i v e loop number
K=1;

48 %v a r i a n c e l = z e r o s ( 1 ,K) ;
%v a r i a n c e t h e t a = z e r o s ( 1 ,K) ;

50 %f o r j =1 :K
f o r i =1 :N

52 %C a l c u l a t e Fp
e ( 1 , 1 ) = s t a t e ( 1 , i ) −5;

54 e ( 2 , 1 ) = s t a t e ( 2 , i )−p i / 6 ;
Fp t =Kpt∗e ( 2 , 1 ) ;

56 Fpn=Kpn∗e ( 1 , 1 ) ;

58 %C a l c u l a t e Fd
de ( 1 , 1 ) = s t a t e ( 3 , i ) ;

60 de ( 2 , 1 ) = s t a t e ( 4 , i ) ;
Fd t =Kdt∗de ( 2 , 1 ) ;

62 Fdn=Kdn∗de ( 1 , 1 ) ;

64 %C a l c u l a t e F i
i e ( 1 , 1 ) = i e ( 1 , 1 ) +e ( 1 , 1 ) ;

66 i e ( 2 , 1 ) = i e ( 2 , 1 ) +e ( 2 , 1 ) ;
F i t = K i t ∗ i e ( 2 , 1 ) ;

68 Fin =Kin∗ i e ( 1 , 1 ) ;

70 %%C a l c u l a t e F t o t a l
F t ( i ) = Fp t + Fdt + F i t + 8 . 6 6 ;

72 Fn ( i ) =Fpn+Fdn+ Fin +15;
x m ( i +1)=x m ( i ) +v∗ d e l t ;

74

%C a l c u l a t e V a r i a n c e
76 %v a r i a n c e l ( j ) = v a r i a n c e l ( j ) +e ( 1 , 1 ) ˆ 2 / 1 0 0 ;

%v a r i a n c e t h e t a ( j ) = v a r i a n c e t h e t a ( j ) +e ( 2 , 1 )
ˆ 2 / 1 0 0 ;

78

%Use ode45 t o s o l v e ode
80 [ ˜ , s t a ]=RK4( @ode , s t a t e ( : , i ) , d e l t / numshoot , (

i −1)∗ d e l t , i ∗ d e l t , F t ( i ) , Fn ( i ) , v ) ;
s t e = s t a ’ ;

82 s t a t e ( : , i +1) = s t e ( end , : ) ;
end

84 %end

86 %%P l o t
%P l o t S t a t e s

88 f i g u r e ;
i =0 :T /N: T ;

90 s u b p l o t ( 2 2 1 )
p l o t ( i , s t a t e ( 1 , : ) ) ; g r i d ;

92 t i t l e ( ’ l (m) ’ ) ;
s u b p l o t ( 2 2 2 )

94 p l o t ( i , s t a t e ( 2 , : ) ) ; g r i d ;
t i t l e ( ’ t h e t a ( r a d ) ’ ) ;

96 s u b p l o t ( 2 2 3 )
p l o t ( i , s t a t e ( 3 , : ) ) ; g r i d ;

98 t i t l e ( ’ d l (m/ s ) ’ ) ;
s u b p l o t ( 2 2 4 )

100 p l o t ( i , s t a t e ( 4 , : ) ) ; g r i d ;
t i t l e ( ’ d t h e t a ( r a d / s ) ’ ) ;

102 %P l o t C o n t r o l S i g n a l
f i g u r e ;

104 s u b p l o t ( 2 1 1 )
p l o t ( i ( 2 :N+1) , F t ) ; g r i d ;

106 t i t l e ( ’ F t (N) ’ ) ;
s u b p l o t ( 2 1 2 )

108 p l o t ( i ( 2 :N+1) , Fn ) ; g r i d ;

t i t l e ( ’ Fn (N) ’ ) ;
110

f i g u r e ;
112 i =10:T /N: T ;

s u b p l o t ( 1 2 1 )
114 p l o t ( i , s t a t e ( 1 , 5 0 0 1 : end ) −5) ; g r i d ;

t i t l e ( ’ E r r o r o f l (m) ’ ) ;
116 s u b p l o t ( 1 2 2 )

p l o t ( i , s t a t e ( 2 , 5 0 0 1 : end )−( p i / 6 ) ) ; g r i d ;
118 t i t l e ( ’ E r r o r o f t h e t a ( r a d ) ’ ) ;

% Kpn = −19.9 :0 .1 : −10;
120 % f i g u r e ;

% s u b p l o t ( 2 1 1 )
122 % p l o t ( Kpn , v a r i a n c e l ) ; g r i d ;

% t i t l e ( ’ V a r i a n c e o f l (mˆ 2 ) wi th Kpt ’ )
124 % s u b p l o t ( 2 1 2 )

% p l o t ( Kpn , v a r i a n c e t h e t a ) ; g r i d ;
126 % t i t l e ( ’ V a r i a n c e o f t h e t a ( r a d ˆ 2 ) wi th Kpt ’ )

./code/kite.m

This part will give general simulation of the system. The
program has two functions, the first one is simulate the states
changing tendency as the input control signals are given to the
system, and the second one is to calculate the variance under
different conditions. Some parameters in this program can be
adjusted, such as Kpt, Kpn and initial states.

IV. SIMULATION RESULT

This section includes two parts: the state simulation and
variance simulation.

A. State Simulation

In this section, we take the value of each control parameter
as:

Kpt = −15;Kdt = −8;Kit = −0.0001 (14)

Kpn = 10;Kdt = 2;Kit = 0.00001 (15)

The steady state set is θ = π
6 and the length of the rope is

l = 5m. The initial state is θ0 = π
3 and l0 = 7m.

Under these conditions, the simulation result is:

Fig. 5. States Plot



Fig. 6. F Plot

Figure 5 plots the four elements of the state. The time-span
is set as 20s. For l and θ, they will go to 5m and π

6 respectively.
And the other two will go to zeros.

Figure 6 gives the plot of force imposed to the rope.They
will finally go to a steady value as set in the code. To test the
accuracy of the control system, there gives the tolerance test
of the steady state.

Fig. 7. Error Plot

Figure 7 gives the error of l and θ after 10 seconds. The
absolute error of l is around 10−3(m) and the error of θ is
also in this regime. However, there gives a tendency that the
error the l is fluctuating around 2 ∗ 10−3(m), while the error
of θ is keeping decrease. Maybe given a larger time-span, the
error of θ can be control within a better regime.

B. Variance Simulation

To get more detail information of the model, in the other
word, finding a better control parameter K, variance analysis
is necessary and inevitable.

1) Changing Kpt: In previous section, the value of Kpt is
set as -15, in this part, it is ranged from -20 to -10, the span
is 10.

Fig. 8. Variance Analysis with Kpt

From Figure 8, the variance of l has a valley when the
value of Kpt is located near -13, while the variance of θ keeps
increasing as a higher value of Kpt.

2) Changing Kpn: In previous section, the value of Kpn

is set as 10, in this part, it is ranged from 5 to 15, the span is
10.

Fig. 9. Variance Analysis with Kpn

From Figure 9, the variance of l keeps decreasing as the
value of Kpn is increasing, while the variance of θ is a peculiar
curve. That curve, to some extent, like a cubic parametric
curve. There shows a mountain when the value of Kpn is
around 8.5, however, in the same plot, there shows a trough
at Kpn = 5.3.

V. CONCLUSION

This article has several highlights.
First and foremost, the model of the scene is original, which

has been modified for several times so that it can fit the
intuition and common sense. And the model still remained
improvable to have a better veracity of the simulation.

Besides, this article gives two calculation strategies, non-
linear version and linearized version. Both of them can be
taken into practice in program simulation. The linearized
model will cost less time but the result will become less



accurate. It’s like a trade off to make which strategy to
implement the model.

Last but not least, the article gives the analysis of variance
with the change of some control parameters. From the simu-
lation results, it will have a better performance in accuracy if
Kpt is set as -13 and Kpn is 5.3.


